
Multi-Objective Optimization 
(MOO)

Arna Fariza



Definition of Optimization

• The process of finding the best solution from a set of feasible 
solutions for a problem.

• Single-Objective vs. Multi-Objective Optimization
• Single-Objective Optimization: Focuses on optimizing a single criterion, 

such as minimizing cost or maximizing profit.
• Multi-Objective Optimization: Involves optimizing two or more conflicting 

objectives simultaneously.



MOO

• Multi-objective optimization or
• Multi-objective programming or 
• Vector optimization or 
• Multicriteria optimization or
• Multiattribute optimization or
• Pareto optimization



MOO

• is an area of multiple criteria decision making that is concerned 
with mathematical optimization problems involving more than one 
objective function to be optimized simultaneously. 

• Minimizing cost while maximizing comfort while buying a car, 
and maximizing performance while minimizing fuel consumption 
and emission of pollutants of a vehicle are examples of multi-
objective optimization problems involving two and three 
objectives, respectively. 

• In practical problems, there can be more than three objectives.



Key Concepts in Multi-Objective Optimization

• Objective Functions: Functions that represent the criteria to be 
optimized.

• Conflicting Objectives: In real-world problems, objectives often 
conflict. For example, in engineering, you may want to minimize weight 
and maximize strength.

• Pareto Optimality:
• Pareto Front: A set of non-dominated solutions where no objective can be 

improved without worsening another.
• Dominance: A solution dominates another if it is better in at least one objective 

without being worse in others.
• Pareto Optimal Solutions: Solutions that are not dominated by any other 

feasible solution.



Practical Example

• Example Problem: Consider optimizing a drone’s flight time 
(objective 1) and camera resolution (objective 2).

• Objective 1: Maximize flight time by reducing battery usage.
• Objective 2: Maximize camera resolution by using higher-powered 

components.
• Conflicting Nature: A higher resolution camera consumes more power, 

reducing flight time.
• Solution: Using a multi-objective algorithm (genetic algorithm) to find a 

balance between both objectives and present a set of Pareto-optimal 
designs.



Methods of Solving Multi-Objective 
Optimization Problems
• Scalarization Methods
• Pareto-Based Methods
• Evolutionary Algorithms
• Other Methods



Scalarization Methods

• Weighted Sum Method: Converts the multi-objective problem 
into a single-objective one by assigning weights to each objective.

• Limitations: Does not work well for non-convex Pareto fronts.



Example: Optimizing a Product Design for 
Cost and Quality
• Problem Statement:

Suppose you're designing a product, and you want to optimize 
two conflicting objectives:

• Minimize cost (Objective 1: f1(x)).
• Maximize quality (Objective 2: f2(x)).

These two objectives conflict because improving quality usually increases 
costs. You decide to use the Weighted Sum Method to handle this multi-
objective problem.



Step 1: Define the Objective Functions
Let's assume the objectives are represented as functions:

f1(x) = Cost of the product.
f2(x) = Quality score of the product.

You want to minimize the total cost and maximize the quality, but to apply the 
Weighted Sum Method, both objectives must be in the same direction. 
Since minimizing one and maximizing another is conflicting, we turn 
maximization of quality into minimization by taking the negative of the quality 
score:

The new objective function for quality becomes: −f2(x).
So, your two objectives now are:

Minimize f1(x) (Cost),
Minimize −f2(x) (Negative Quality).



Step 2: Combine the Objectives Using 
Weights
The Weighted Sum Method combines the objectives into a single scalar objective 
function by assigning a weight to each:

F(x) = w1 f1(x) + w2 (−f2(x)) 
Where:

w1 and w2 are weights that reflect the relative importance of each objective.
The weights must sum to 1, so w1 + w2 = 1
For example, if cost is more important than quality, you might assign:

w1 = 0.7 (70% weight to cost),
w2 = 0.3 (30% weight to quality).

The combined objective function becomes:
F(x) = 0.7 f1(x) + 0.3 (−f2(x))



Step 3: Solve the Optimization Problem

Now, you solve the optimization problem by minimizing the single scalar 
objective F(x). 
The solution will give you a trade-off between cost and quality based on 
the specified weights.



Step 4: Interpret the Result
Let’s assume specific cost and quality functions for the product:

f1(x) = 10x2 + 5 (cost function, where xxx represents a design parameter),
f2(x) = 20 − 2x (quality function, where higher values of xxx improve quality but 

also increase cost).
Using the weighted sum approach:

F(x) = 0.7 (10x2 + 5 ) + 0.3 (−(20 − 2x ))
F(x) = 7x2 + 3.5 − 6 + 0.6 x 
F(x) = 7x2 + 0.6x − 2.5

You would now minimize F(x) with respect to x to find the best trade-off between cost 
and quality.



Step 5: Varying the Weights

To explore different trade-offs between cost and quality, you can vary the 
weights:

w1 = 0.5, w2 = 0.5 (equal importance to both),
w1 = 0.9, w2 = 0.1 (cost is more important),
w1 = 0.3, w2 = 0.7 (quality is more important).

Each weight combination will yield a different solution, and the set of all 
solutions forms a Pareto front that helps in visualizing the trade-offs 
between the objectives.



Pareto-Based Methods

• Genetic Algorithms : Evolutionary algorithms that search for a set 
of Pareto-optimal solutions. NSGA-II (Non-dominated Sorting 
Genetic Algorithm) is one of the most popular.

• Strengths: Good for complex, non-linear, and non-convex 
problems.



NSGA-II
Initialization

Fitness Evaluation

Non-dominated Sorting

Crowding Distance Calculation

Selection

Crossover and Mutation

New Population Conver
gen? Solution



Example: Optimizing a Car Design for Fuel 
Efficiency and Safety



Step 1: Define the Objective Functions



Step 2: Initialize a Population of Solutions



Step 3: Evaluate Fitness (Objective Functions)



Step 4: Non-dominated Sorting



Step 5: Crowding Distance Calculation



Step 6: Selection, Crossover, and Mutation



Step 7: Evolution of Solutions



Step 8: Pareto Front and Trade-offs



Visualization



Evolutionary Algorithms

• Differential Evolution (DE): Used for optimizing real-valued 
problems by evolving a population of candidate solutions.

• Particle Swarm Optimization (PSO): Swarm-based algorithm 
inspired by social behavior.



Other Methods

• Multi-Objective Simulated Annealing (MOSA): A probabilistic 
technique that mimics the process of annealing in metals.

• Game-Theoretic Approaches: Model the optimization as a game 
between multiple players, each representing an objective.



Applications of Multi-Objective Optimization

• Engineering Design: Balancing performance, cost, and durability 
in the design of vehicles, aircraft, or machinery.

• Finance: Optimizing portfolios for maximum return and minimum 
risk.

• Supply Chain Management: Minimizing costs and maximizing 
customer satisfaction.

• Energy Systems: Trade-offs between efficiency, cost, and 
environmental impact in energy production.

• Healthcare: Balancing treatment effectiveness with minimizing 
side effects or costs.



Challenges in Multi-Objective Optimization

• Curse of Dimensionality: As the number of objectives increases, 
finding the Pareto front becomes computationally expensive.

• Solution Diversity: Ensuring that the Pareto front represents a 
wide range of trade-offs between objectives.

• Computational Complexity: Many real-world problems require 
high computational resources to find solutions.


