

Simulated Annealing

Arna Fariza – S2 TIK PENS

Introduction to Simulated Annealing

- **Definition:** Simulated Annealing (SA) is a probabilistic technique for approximating the global optimum of a function.
- **Inspiration:** Based on the process of annealing in metallurgy. Origin in metallurgy—annealing is the process of heating and slowly cooling metal to decrease defects.
- **Key Idea:** Gradually lower the "temperature" to reduce the system's energy, leading to an optimal solution.
- When to Use: Discuss how it's particularly helpful for combinatorial and non-convex optimization problems, where traditional methods might get stuck in local optima.

Why Use Simulated Annealing?

- **Optimization Problems:** Often used when the search space is large and complex.
- Advantages: Can escape local minima, efficient for certain types of problems.
- **Limitations:** Results depend on cooling schedule and can be computationally intensive.

Core Principles

- Metaphor of Energy and Temperature:
 - **Energy (E):** Represents the objective function or solution quality in optimization.
 - **Temperature (T):** Controls the probability of accepting worse solutions.
- Cooling Schedule: Highlight how temperature gradually decreases during the process.

How Simulated Annealing Works

- 1. Start with an initial solution (randomly generated).
- 2. Initialize a high temperature.
- 3. Iterate: For each temperature, make small changes to the solution.
 - If the change improves the solution, accept it.
 - If not, accept it with a probability dependent on the temperature.
- **4. Reduce temperature gradually** following a cooling schedule until it reaches a threshold.

Key Components of Simulated Annealing

- **Temperature (T):** Controls the probability of accepting worse solutions.
- **Cooling Schedule:** Determines how fast temperature decreases.
- Acceptance Probability: Defines the likelihood of accepting worse solutions.

Algorithm step

1. Initialization: Choose an initial solution and set initial temperature.

2. Iterative Process:

- 1. Generate a neighbor solution.
- 2. Calculate the change in energy (ΔE).
- 3. Decide whether to accept the new solution:
 - 1. If better, accept it.
 - 2. If worse, accept with a probability based on temperature and ΔE (use formula).
- **3. Cooling**: Gradually lower the temperature following a predefined *cooling schedule* (e.g., geometric, linear).
- **4. Stopping Criterion**: Repeat until the system "freezes" (temperature reaches minimum or no more improvement is possible).

Algorithm component

- **Neighborhood Selection:** Explain how to define neighboring solutions, relevant to specific problems.
- Acceptance Probability: Introduce the Metropolis criterion:

 $P(accept)=exp(-\Delta E/T)$

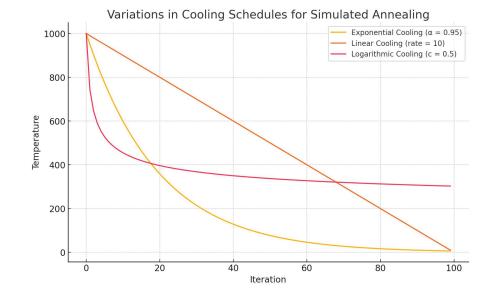
• **Cooling Schedule:** Various cooling strategies (e.g., exponential decay with Tnew=α×ToldT where α is between 0.8 and 0.99).

Acceptance Probability Formula

- Formula: $P(\Delta E) = exp(-\Delta E/T)$
 - Where ΔE is the change in solution quality.
 - **Explanation:** Higher T means higher probability of accepting a worse solution.

Cooling Schedules

- Linear Cooling: Decrease temperature linearly.
- **Geometric Cooling:** Multiply temperature by a constant (e.g., 0.9).
- Logarithmic Cooling: Slower cooling, often provides better accuracy.



Application of Simulated Annealing

Traveling Salesman Problem (TSP)

Scheduling and Resource Allocation

Machine Learning: Hyperparameter Tuning

Advantages & Limitations

Advantages:	 Simple and flexible, Can handle large and complex spaces.
Limitations:	 Heavily dependent on the cooling schedule, slower than some other heuristics.

Summary

Wrap-Up: Simulated annealing offers a practical way to approach optimization problems by balancing exploration and exploitation.

Key Takeaway: Effectiveness depends on properly tuning parameters like temperature and cooling rate.