Sistem Informasi Geografis

Dunia Nyata dan SIG

Oleh: Politeknik Elektronika Negeri Surabaya

2023

Politeknik Elektronika Negeri Surabaya Departemen Teknik Informatika dan Komputer

Tujuan Perkuliahan

- Mahasiswa memahami penggunaan SIG untuk memodelkan dunia nyata
- Mahasiswa memahami model-model data pada SIG
- Mahasiswa mengerti kemampuan-kemampuan SIG

Materi

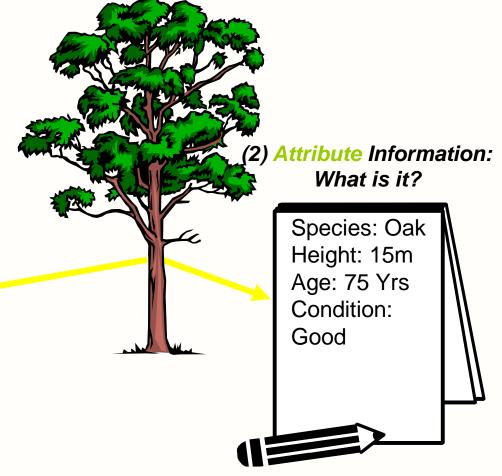
- Representasi dunia nyata
- Sistem Informasi Geografis
- Data pada SIG
- Model Data pada SIG
- Kemampuan SIG

Representasi Dunia Nyata dalam SIG

- Dunia sangat kompleks dan tak terbatas
- Database spasial merepresentasikan realitas dalam bentuk yang terbatas
 - Database spasial adalah model realitas
- User melihat dunia nyata melalui media database

Kompleksitas Dunia Nyata

- Dunia nyata (real world) adalah segala sesuatu yang terdapat di alam.
- Dunia nyata memiliki kompleksitas baik dari ukuran, jenis, dan waktu peristiwa.
 - Ukuran atomik hingga masalah benua atau yang lebih luas lagi
 - Peristiwa yang terjadi ribuan tahun yang lalu hingga detik ini
 - Bentuk molekular hingga interaksi sosial
- Kompleksitas mengakibatkan sulitnya manusia menggambarkan dunia nyata tersebut.

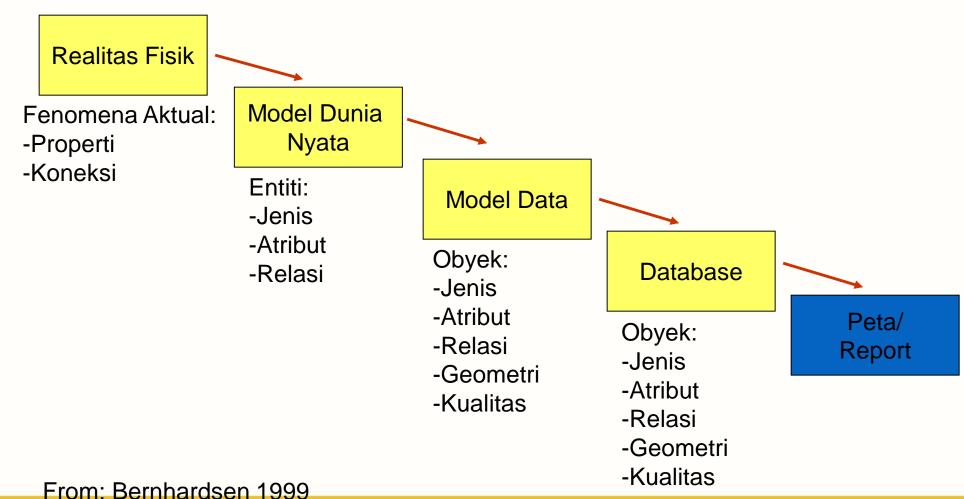


Gambaran Dunia Nyata

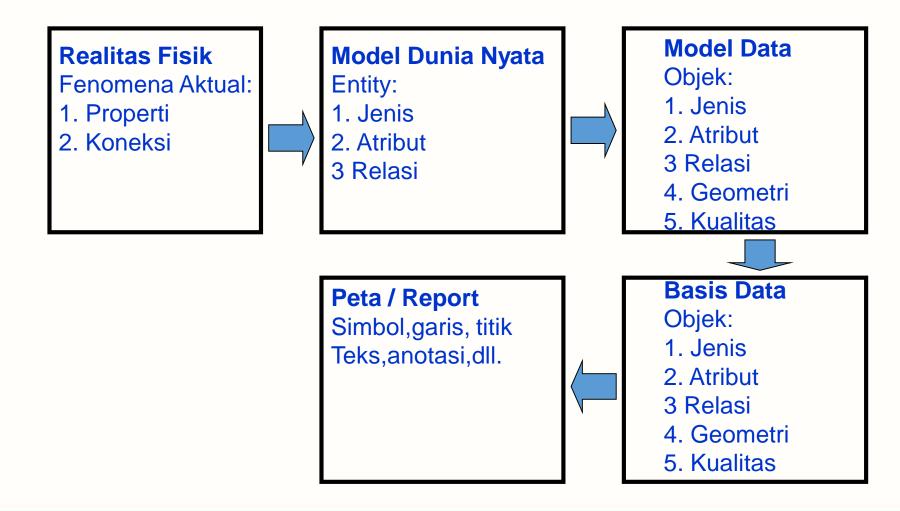
Elemen pada permukaan bumi dapat digambarkan dengan dua cara:

Penggambaran Dunia Nyata

- Penyederhanaan, klasifikasi, dan simbolisasi sesuai dengan interpretasi masingmasing individu
- Tidak mungkin sekaligus digambarkan secara lengkap, detil, dan sempurna.
- Dipengaruhi oleh pengalaman dan pengetahuan masing-masing individu atas dunia nyata sebagai lingkungannya
 - Seorang nelayan berusaha mengenali sifat-sifat angin agar dirinya selamat dalam pelayarannya.
 - Petani mengenali sifat-sifat tanah agar mendapatkan hasil panen yang baik.
 - Tentara mengenali bentuk lahan dengan harapan mendapatkan posisi dan lokasi yang strategis dalam bertempur sehingga memenangkan pertempuran tersebut.



Dunia Nyata ke SIG


- SIG sebagai sebuah sistem informasi melakukan penyederhanaan terhadap fenomena dunia nyata ini.
- Pendekatan secara spasial dan non spasial.
- Analisis spasial dalam SIG berusaha menerangkan fenomena dunia nyata melalui model dunia nyata (real world model).
- Model dunia nyata ditujukan untuk mengurangi kompleksitas dengan mengambil fenomena-fenomena tertentu saja yang sejalan dengan tujuan.
- Model dunia nyata selanjutnya dijelaskan melalui model data.
- Proses interpretasi fenomena alami dengan menggunakan model dunia nyata dan model data disebut dengan pemodelan data (Bernhardsen, 1999).

Merepresentasikan real world menjadi digital?

Konsep Hubungan

Model Dunia Nyata

- Model dunia nyata menerangkan kenyataan yang ada pada dunia nyata.
- Pembawa informasi dari model dunia nyata ini adalah entitas.
- Entitas terdiri dari : Jenis (type classification), atribut (attribute), relasi (relationship).

Jenis Entitas

- Jenis entitas didasarkan atas asumsi bahwa fenomena yang seragam dapat digolongkan ke dalam klasifikasi yang sama.
- Klasifikasi jenis harus memiliki nama yang unik.
- Misal, dilapangan terdapat beberapa jalan dengan berbagai ukuran dan kepadatan.
 - Jalan tersebut diidentifikasi sebagai jalan negara, jalan propinsi, jalan kabupaten, dan jalan desa.
 - Proses identifikasi tingkatan jalan tersebut sebenarnya memasukkan jalan ke dalam kelompok unik tertentu, yang mana jalan masuk dalam kelompok besar yang disebut jalan.
- Contoh lain, terdapat beberapa bangunan di lapangan.
 - Bangunan-bangunan tersebut masuk dalam golongan besar yang disebut kelompok Bangunan.
 - Bangunan-bangunan tersebut kemudian diidentifikasi sebagai rumah mukim, perkantoran, pabrik, dan lain-lain.
 - Proses identifikasi bangunan tersebut merupakan proses memasukkan obyek bangunan kedalam kelompok-kelompok yang lebih spesifik.

Atribut Entitas

- Atribut entitas merupakan data yang menerangkan sebuah jenis entitas.
- Sebuah jenis entitas memungkinkan memiliki lebih dari satu data atribut.
- Misal, sebuah jalan memiliki data atribut nama, lebar, kelas jalan, kepadatan, dan lain-lain.
- Atribut entitas digolongkan menjadi data kualitatif dan data kuantitatif.
 - Data kualitatif menjelaskan entitas secara deskriptif
 - Data kuantitatif dikelompokkan menjadi tiga tingkat ketepatannya (accuracy).
 - Proporsional seperti pengukuran jarak dan luas area,
 - Interval yang menggolongkan data pada kelompok-kelompok tertentu seperti umur, pendapatan dan lain-lain,
 - Ordinal yang menggolongkan data pada tingkatan-tingkatan seperti buruk-sedang-baik.

Relasi Entitas

- Sebuah entitas memiliki relasi atau keterkaitan dengan entitas-entitas yang lain.
- Untuk menjelaskan sebuah entitas tertentu perlu dijelaskan kaitannya entitas tersebut dengan entitas-entitas disekitarnya, misalnya posisi relatifnya, bagian dari kelompok mana, terdiri dari unsur apa saja, berdampingan dengan apa saja, dan lain-lain.

Model Data

- Model data merupakan penterjemahan dari model dunia nyata
- Model data memungkinkan dirancang untuk mencakup hal-hal berikut:
 - 1. Obyek fisik seperti jalan, sungai, bangunan, dll.
 - 2. Obyek terklasifikasi seperti jenis vegetasi, zona iklim, dll.
 - 3. Kejadian atau peristiwa seperti banjir, longsor, badai, dll.
 - 4. Obyek yang memiliki perubahan berkelanjutan seperti batas temperatur
 - 5. Obyek buatan seperti kepadatan penduduk, garis kontur.
- Sebuah model data dapat memiliki banyak obyek.
- Masing-masing obyek inilah yang selanjutnya terhubung dengan informasi dalam kemasan basisdata.
 - Obyek merupakan pembawa informasi model data.

Model Data

Bangunan

Yang termasuk Rumah, sekolah, industri, pertokoan

Terletak di Nomor persil

Representasi oleh Titik

Ketelitian geometri 10 meter

Jalan

Yang termasuk Jalan negara, provinsi, kabupaten, tol, layang

Satuan panjang Meter

Representasi oleh Garis

Ketelitian geometri 15 meter

Tataguna Lahan

Pemukiman kebun hutan kawasan industri dll Yang termasuk

Satuan Luas Hektar

Representasi oleh Poligon

Ketelitian geometri 12 meter

Model Data

Model data diterjemahkan kedalam tabel-tabel basisdata

ID	Nama	Nomor Persil	X	Y
43	Rumah	R-500	110,23548	-7,43584
2	Industri kecil	I-1000	110,42304	-7,23029
15	Sekolah Dasar	S-0001	110,00345	-7,43502

Atau

15

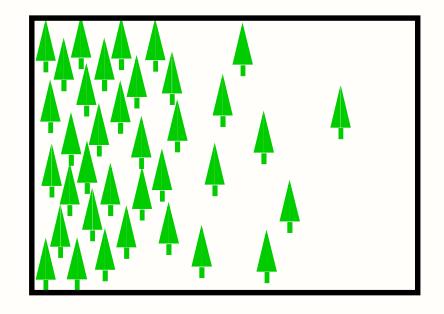
ID	Nama	Koordinat
43	Rumah	12,10;21
2	Industri kecil	

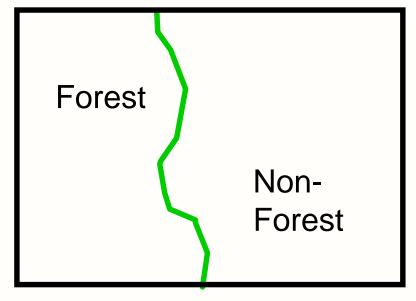
Sekolah Dasar

Obyek

- Obyek adalah pembawa informasi bagi sebuah model data.
- Obyek dicirikan oleh tipe, atribut, hubungan, geometri, dan kualitas.
- Masing-masing obyek memiliki identitas yang tidak ada kesamaannya dengan obyek lain (unique).
- Masing-masing obyek dapat dibedakan dengan obyek lainnya melalui identitas tersebut, sehingga tidak akan terdapat dua atau lebih obyek dengan identitas yang sama.
- Dalam penggambarannya secara grafis, obyek disimbolkan ke dalam bentuk titik, garis dan area.

Representasi Dunia Nyata


- Database terdiri dari
 - ✓ Versi digital dari obyek nyata, seperti rumah, jalan, hutan
 - ✓ Versi digital dari obyek buatan, misalnya batas politis/negara
- ☐ Komputer adalah alat yang baik untuk menyimpan data spasial diskrit, tetapi tidak bagus dalam menyimpan data kontinyu



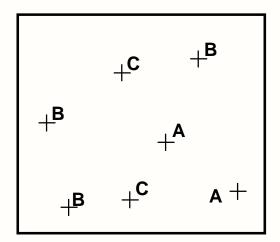
Fitur pada Dunia Nyata

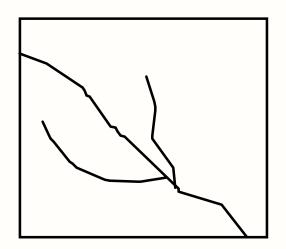
- Feature (fitur): objek2 yang berada didunia nyata.
- Ada dua jenis fitur, yaitu:
 - Discrete feature, misal:
 - Rumah, pulau, jalan, danau.
 - Continuous feature, misal:
 - Temperatur.
- Discrete feature dapat disimpan langsung di komputer, sedangkan continuous feature harus di konversikan ke bentuk discrete lebih dahulu.

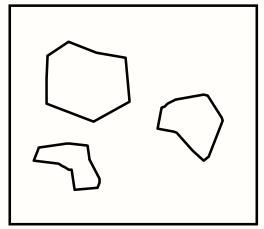
kenyataan

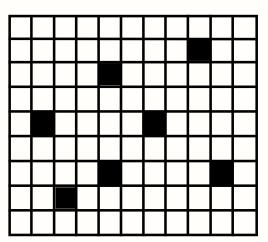
Representasi pada GIS

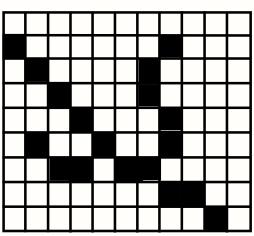
kadang-kadang perbedaan antara objek discrete dan continuous tidak jelas.

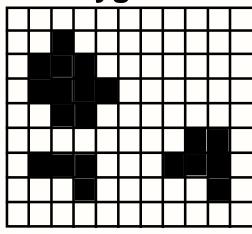



Object dan Field

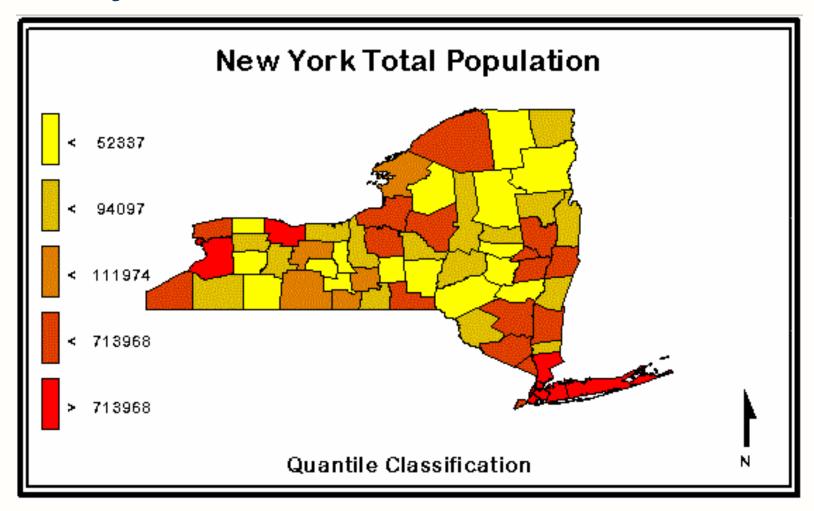

- Object: wilayah kosong yang di-'isi' dengan objek (titik, garis, atau area/poligon)
- Field: nilai yang didefinisikan untuk semua lokasi.


Object

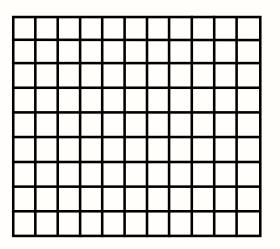



Points

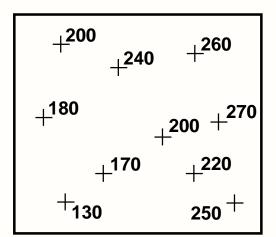
Lines

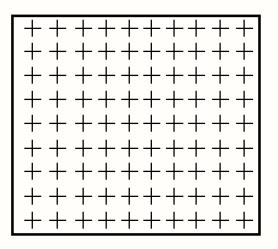


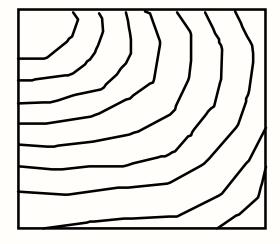
Polygons



Contoh Object

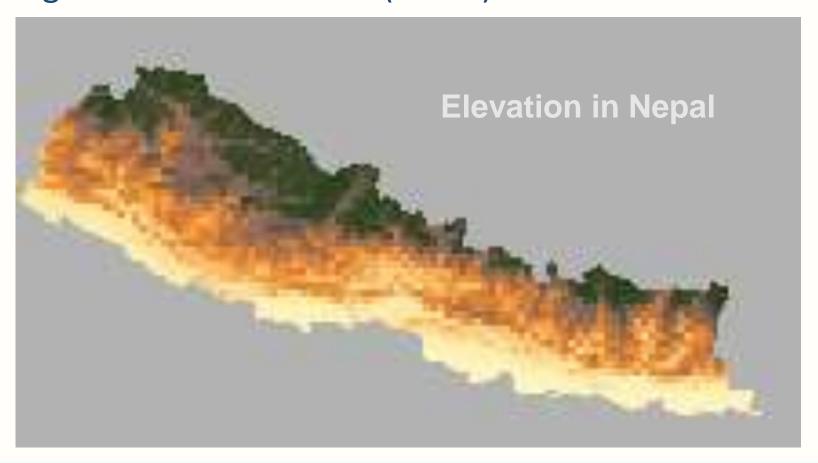



Field

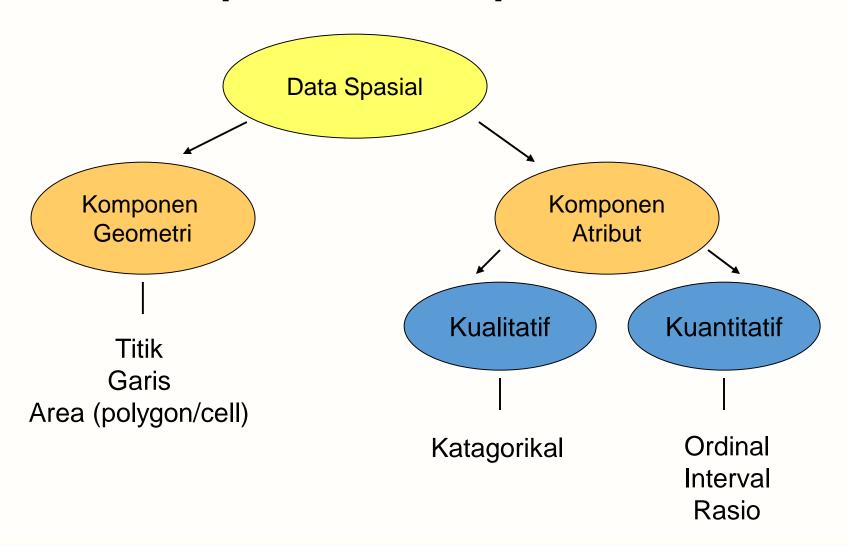

Raster grid

Irregular points

Regular point grid

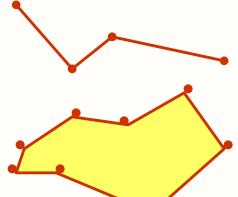


Contour lines


Contoh Field

Digital elevation models (DEMs)

Komponen Data Spasial



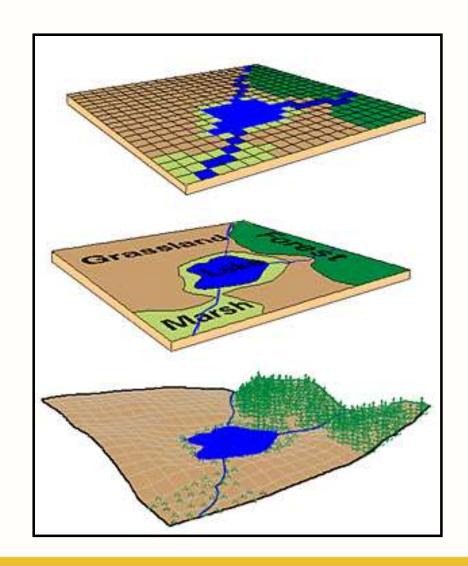
Representasi Geometri

 Titik: Obyek 0-D object yang menentukan lokasi geometri dalam bentuk koordinat,

Garis (vektor): Obyek 1-D berupa garis langsung atara 2 titik.

String: deretan garis.

Polygon: Obyek 2-D yang terdiri dari setidaknya 3 garis 1-D.

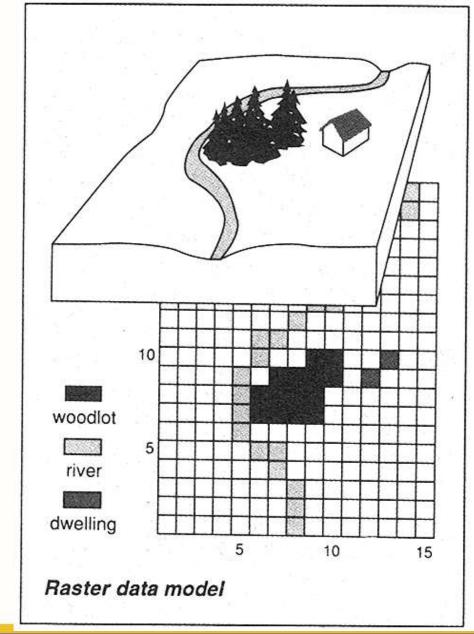

Raster sel/piksel: 2-D yang merepresentasikan elemen permukaan yang teratur.

Representasi Data

Raster

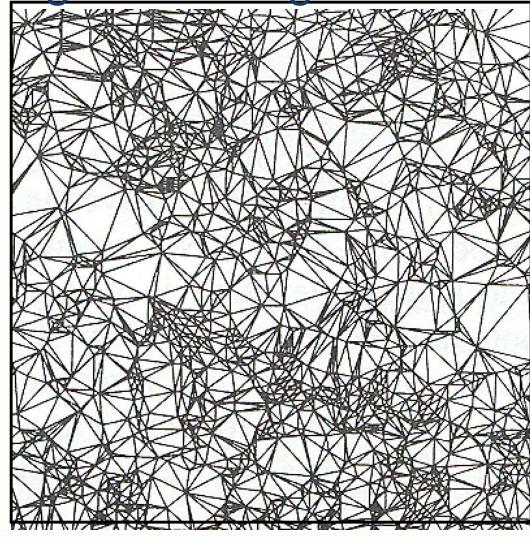
Vector

Real World

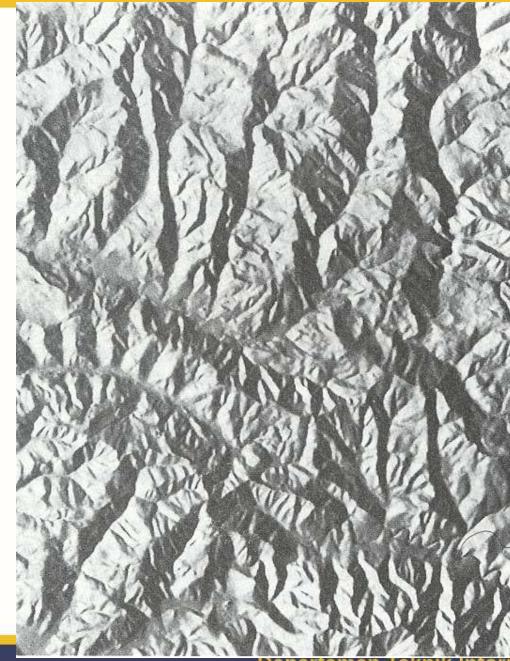


Politeknik Elek

Model Data Raster

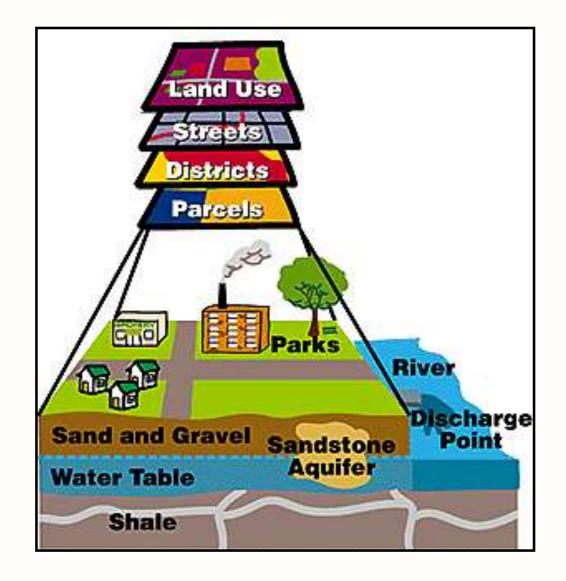


Model Data Raster



Model Data TIN (Triangulated Irregular Network)

TIN → Model Data Raster



Vektor vs. Raster

- Kelebihan Vektor:
 - Representasi yang baik dari model data entitas
 - Penyimpanan yang efisien
 - Topologi dapat digambarkan secara eksplisit dan mudah dimanipulasi
 - Operasi query yang efisien
- Kelebihan raster:
 - Struktur data yang sederhana
 - Representasi yang efisien untuk data yang sangat bervariasi
 - Pemodelan matematika lebih mudah karena semua entitas mempunyai bentuk yang sederhana dan teratur

Abstraksi Dunia Nyata

Praktek

- Per Kelompok: Carilah makalah dan buatlah PPT Pemanfaaan GIS di dunia nyata
- 1. Fenomena apa saja yang digunakan pada makalah tersebut
- 2. Entitas apa saja yang digunakan (tipe, atribut dan relasi)
- 3. Obyek apa saja yang dibuat

Referensi

- 1. Wilpen L. Gorr & Kristen S. Kurland, GIS Tutorial Basic Workbook, Esri Pers, 2008
- 2. Eddy Prahasta, Tutorial ArcGIS, Informatika, 2015

bridge to the future

http://www.eepis-its.edu

