
Software Evolution &
Maintenance
Arna Fariza

S2 Teknik Informatika
PENS

Topics
• Evolution processes

Change processes for software systems

• Program evolution dynamics
Understanding software evolution

• Software maintenance
Making changes to operational software systems

• Legacy system management
Making decisions about software change

Software change

• Software change is inevitable
• New requirements emerge when the software is used;

• The business environment changes;

• Errors must be repaired;

• New computers and equipment is added to the system;

• The performance or reliability of the system may have to be improved.

• A key problem for all organizations is implementing and managing change to
their existing software systems.

Importance of evolution

• Organisations have huge investments in their software systems - they
are critical business assets.

• To maintain the value of these assets to the business, they must be
changed and updated.

• The majority of the software budget in large companies is devoted to
changing and evolving existing software rather than developing new
software.

Evolution processes

• Software evolution processes depend on
• The type of software being maintained;

• The development processes used;

• The skills and experience of the people involved.

• Proposals for change are the driver for system evolution.
• Should be linked with components that are affected by the change, thus

allowing the cost and impact of the change to be estimated.

• Change identification and evolution continues throughout the system
lifetime.

Change identification and evolution processes

The software evolution process

Change implementation

Change implementation

• Iteration of the development process where the revisions to the
system are designed, implemented and tested.

• A critical difference is that the first stage of change implementation
may involve program understanding, especially if the original system
developers are not responsible for the change implementation.

• During the program understanding phase, you have to understand
how the program is structured, how it delivers functionality and how
the proposed change might affect the program.

Urgent change requests

• Urgent changes may have to be implemented without going through
all stages of the software engineering process

• If a serious system fault has to be repaired to allow normal operation to
continue;

• If changes to the system’s environment (e.g. an OS upgrade) have unexpected
effects;

• If there are business changes that require a very rapid response (e.g. the
release of a competing product).

The emergency repair process

• Program evolution dynamics is the study of the processes of system
change.

• After several major empirical studies, Lehman and Belady proposed
that there were a number of ‘laws’ which applied to all systems as
they evolved.

• There are sensible observations rather than laws. They are applicable
to large systems developed by large organisations.

• It is not clear if these are applicable to other types of software system.

Program evolution dynamics

• The system requirements are likely to change
while the system is being developed because
the environment is changing. Therefore a
delivered system won't meet its requirements!

• Systems are tightly coupled with their environment. When a system is installed in
an
environment it changes that environment and
therefore changes the system requirements.

• Systems MUST be changed if they
are to remain useful in an environment.

Change is inevitable

Lehman’s laws

Law Description

Continuing change A program that is used in a real-world environment must necessarily

change, or else become progressively less useful in that

environment.

Increasing

complexity

As an evolving program changes, its structure tends to become more

complex. Extra resources must be devoted to preserving and

simplifying the structure.

Large program

evolution

Program evolution is a self-regulating process. System attributes

such as size, time between releases, and the number of reported

errors is approximately invariant for each system release.

Organizational

stability

Over a program’s lifetime, its rate of development is approximately

constant and independent of the resources devoted to system

development.

Lehman’s laws

Law Description

Conservation of familiarity Over the lifetime of a system, the incremental change in each

release is approximately constant.

Continuing growth The functionality offered by systems has to continually

increase to maintain user satisfaction.

Declining quality The quality of systems will decline unless they are modified to

reflect changes in their operational environment.

Feedback system Evolution processes incorporate multiagent, multiloop

feedback systems and you have to treat them as feedback

systems to achieve significant product improvement.

Key points

• Software development and evolution can be thought of as an
integrated, iterative process that can be represented using a spiral
model.

• For custom systems, the costs of software maintenance usually
exceed the software development costs.

• The process of software evolution is driven by requests for changes
and includes change impact analysis, release planning and change
implementation.

• Lehman’s laws, such as the notion that change is continuous, describe
a number of insights derived from long-term studies of system
evolution.

• Modifying a program after it has been put into use.

• The term is mostly used for changing custom software. Generic
software products are said to evolve to create new versions.

• Maintenance does not normally involve major changes to the
system’s architecture.

• Changes are implemented by modifying existing components and
adding new components to the system.

Software maintenance

• Maintenance to repair software faults
• Changing a system to correct deficiencies in the way meets its requirements.

• Maintenance to adapt software to a different operating environment
• Changing a system so that it operates in a different environment (computer, OS, etc.) from its

initial implementation.

• Maintenance to add to or modify the system’s functionality
• Modifying the system to satisfy new requirements.

Types of maintenance

Figure 9.8 Maintenance effort distribution

• Usually greater than development costs (2* to
100* depending on the application).

• Affected by both technical and non-technical
factors.

• Increases as software is maintained.
Maintenance corrupts the software structure so
makes further maintenance more difficult.

• Ageing software can have high support costs
(e.g. old languages, compilers etc.).

Maintenance costs

Figure 9.9 Development and maintenance costs

• Team stability
• Maintenance costs are reduced if the same staff are involved with

them for some time.

• Contractual responsibility
• The developers of a system may have no contractual responsibility for

maintenance so there is no incentive to design for future change.

• Staff skills
• Maintenance staff are often inexperienced and have limited domain

knowledge.

• Program age and structure
• As programs age, their structure is degraded and they become harder

to understand and change.

Maintenance cost factors

System re-engineering

• Re-structuring or re-writing part or all of a
legacy system without changing its
functionality.

• Applicable where some but not all sub-systems
of a larger system require frequent
maintenance.

• Re-engineering involves adding effort to make
them easier to maintain. The system may be re-structured and re-documented.

Advantages of reengineering

• Reduced risk
• There is a high risk in new software development. There may be development

problems, staffing problems and specification problems.

• Reduced cost
• The cost of re-engineering is often significantly less than the costs of

developing new software.

The reengineering process

Reengineering process activities

• Source code translation
• Convert code to a new language.

• Reverse engineering
• Analyse the program to understand it;

• Program structure improvement
• Restructure automatically for understandability;

• Program modularisation
• Reorganise the program structure;

• Data reengineering
• Clean-up and restructure system data.

Figure 9.12 Reengineering approaches

Reengineering cost factors

• The quality of the software to be reengineered.

• The tool support available for reengineering.

• The extent of the data conversion which is required.

• The availability of expert staff for reengineering.
• This can be a problem with old systems based on technology that is no longer

widely used.

Legacy system management

• Organisations that rely on legacy systems must choose a strategy for evolving
these systems

• Scrap the system completely and modify business processes so that it is no longer required;

• Continue maintaining the system;

• Transform the system by re-engineering to improve its maintainability;

• Replace the system with a new system.

• The strategy chosen should depend on the system quality and its business value.

Figure 9.13 An example of a legacy system
assessment

Legacy system categories

• Low quality, low business value
• These systems should be scrapped.

• Low-quality, high-business value
• These make an important business contribution but are expensive to maintain. Should be re-

engineered or replaced if a suitable system is available.

• High-quality, low-business value
• Replace with COTS, scrap completely or maintain.

• High-quality, high business value
• Continue in operation using normal system maintenance.

Business value assessment

• Assessment should take different viewpoints into account
• System end-users;

• Business customers;

• Line managers;

• IT managers;

• Senior managers.

• Interview different stakeholders and collate results.

Key points

• There are 3 types of software maintenance, namely bug fixing,
modifying software to work in a new environment, and implementing
new or changed requirements.

• Software re-engineering is concerned with re-structuring and re-
documenting software to make it easier to understand and change.

• Refactoring, making program changes that preserve functionality, is a
form of preventative maintenance.

• The business value of a legacy system and the quality of the
application should be assessed to help decide if a system should be
replaced, transformed or maintained.

